	Question	Answer	Marks	Guidance
1		$\Rightarrow 5 x(x+1)-3(2 x+1)=(2 x+1)(x+1)$	M1*	Multiplying throughout by $(2 x+1)(x+1)$ or combining fractions and multiplying up oe (eg can retain denominator throughout) Condone a single numerical error, sign error or slip provided that there is no conceptual error in the process involved Do not condone omission of brackets unless it is clear from subsequent work that they were assumed eg $5 x(x+1)-3(2 x+1)=(2 x+1)(x-1)$ gets M1 $5 x(x+1)-3(2 x+1)=1$ gets M0 $5 x(x+1)(2 x+1)-3(2 x+1)(x+1)=(x+1)(2 x+1)$ gets M0 $5 \mathrm{x}(x+1)-3(2 x+1)=(2 x+1)$ gets M1, just, for slip in omission of $(x+1)$
			M1dep*	Multiplying out, collecting like terms and forming quadratic (= 0). Follow through from their equation provided the algebra is not significantly eased and it is a quadratic. Condone a further sign or numerical error or a minor slip when rearranging
		$\Rightarrow \quad 3 x^{2}-4 x-4=0$	A1	oe www (not fortuitously obtained - check for double errors)
		$\Rightarrow \quad(3 x+2)(x-2)=0$	M1	Solving their three term quadratic $(=0)$ provided $b^{2}-4 a c \geq 0$. Use of correct quadratic equation formula (if formula is quoted correctly then only one sign slip is permitted, if the formula is quoted incorrectly M0, if not quoted at all substitution must be completely correct to earn the M1) or factorising (giving their x^{2} term and one other term when factors multiplied out) or comp. the square (must get to the square root stage involving \pm and arithmetical errors may be condoned provided their $3(x-2 / 3)^{2}$ seen or implied)
		$\Rightarrow \quad x=-2 / 3$ or 2	A1	cao for both obtained www (condone -0.667 or better) (If no factorisation (oe) seen B1 for each answer stated following correct quadratic)
			[5]	

$5 \quad \frac{x}{x^{2}-1}+\frac{2}{x+1}=\frac{x}{(x-1)(x+1)}+\frac{2}{x+1}$

$$
\begin{aligned}
& =\frac{x+2(x \quad-1}{(x+1)(x+1)} \\
& =\frac{\left(3^{x} \overline{2}\right)}{(x+1)}
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{x}{x^{2}-1}+\frac{2}{x+1}=\frac{x\left(x \quad \left(++12\left(\frac{2}{x}-1\right)\right.\right.}{x-4+1)(x-(} \\
& =\frac{32+x * 2}{\left(x^{2}-\right)(x+1)} \\
& =\frac{(3 x-2)(x+1)}{\left(x^{2}+1\right)(x \quad 1)} \\
& \frac{(3 x-2)}{x^{2}-} \\
& (1)
\end{aligned}
$$

B1
correct method for addition of fractions

$$
(3 x-2)(x+1)
$$

accept denominator as $x^{2}-1 \operatorname{or}(x-1)(x+1)$ do not isw for incorrect subsequent cancelling

$\text { 7(i) } \begin{aligned} \frac{3}{(y-2)(y+1)} & =\frac{A}{y-2}+\frac{B}{y+1} \\ & =\frac{A(y+1)+B(y-2)}{(y-2)(y+1)} \\ \Rightarrow \quad 3 & =A(y+1)+B(y-2) \\ & =2 \Rightarrow 3=3 A \Rightarrow A=1 \\ y & =-1 \Rightarrow 3=-3 B \Rightarrow B=-1 \end{aligned}$	M1 A1 A1 [3]	substituting, equating coeffs or cover up
$\begin{aligned} & \text { (ii) } \quad \frac{d y}{d x}=x^{2}(y-2)(y+1) \\ & \Rightarrow \quad \int \frac{3 \mathrm{~d} y}{(y-2)(y+1)}=\int 3 x^{2} \mathrm{~d} x \\ & \Rightarrow \quad \int\left(\frac{1}{(y-2)}-\frac{1}{y+1}\right) \mathrm{d} y=\int 3 x^{2} \mathrm{~d} x \\ & \Rightarrow \quad \ln (y-2)-\ln (y+1)=x^{3}+c \\ & \Rightarrow \quad \ln \left(\frac{y-2}{y+1}\right)=x^{3}+c \\ & \Rightarrow \quad \frac{y-2}{y+1}=\mathrm{e}^{x^{3}+c}=\mathrm{e}^{x^{3}} \cdot \mathrm{e}^{c}=A \mathrm{e}^{x^{3}} * \end{aligned}$ AndMathsTutor.com	M1 B1ft B1 M1 E1 [5]	separating variables $\ln (y-2)-\ln (y+1)$ ft their A, B $x^{3}+c$ anti-logging including c www

$8 \quad \frac{2 x}{x^{2}-4}+\frac{x}{x+2}=\frac{2}{(x-2)(x+2)}+x$

$$
\begin{aligned}
& =\frac{x 2(+2}{(* 2+)(x-2)} \\
& =\frac{3 x-4}{(x 2+)(x-2)}
\end{aligned}
$$

M1 combining fractions correctly factorising and cancelling (may be $\left.3 x^{2}+2 x-8\right)$

	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1A1 } \\ \text { M1 A } \end{array}$	binomial expansion with $p=-1 / 2$ $\begin{aligned} & 1-2 x^{2} \ldots \\ & +x^{4} \end{aligned}$
$\begin{aligned} & \text { (ii) } \frac{1-x^{2}}{\sqrt{1+4^{2}}}=(1-x)^{2}\left(1-x^{2}+6 x+\ldots\right) \\ & =-1 x^{2} \neq x^{4}-x^{2} 2 \\ & \quad+x^{4} \frac{1}{2} \cdot \cdot \\ & =1-3 x^{2}+8 x^{4}+\ldots \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \\ \text { A1 } \\ \text { [3] } \end{array}$	substitituting their 1-2 $x+6 x+4$ and expanding ft their expansion (of three terms) cao

$\text { 10 (i) } \begin{aligned} & 0.5\left[\frac{(1.1696}{2}+1.0655\right. \\ & =1.1060] \\ & 1.11(3 \mathrm{~s} \mathrm{f.}) \end{aligned}$	M1 A1 cao [2]	Correct expression for trapezium rule
$\text { (ii) } \begin{aligned} \left(1+e^{-x}\right)^{1 / 2} & =1+\frac{1}{2} e^{-x}+\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2!}\left(e^{-x}\right)^{2}+\ldots \\ & \approx 1+\frac{1}{2} e^{-x}-\frac{1}{8} e^{-2 x *} \end{aligned}$	M1 A1 E1 [3]	Binomial expansion with $p=1 / 2$ Correct coeffs
$\text { (iii) } \begin{aligned} I & =\int_{1}^{2}\left(1+\frac{1}{2} e^{-x}-\frac{1}{8} e^{-2 x}\right) d x \\ & =\left[x-\frac{1}{2} e^{-x}+\frac{1}{16} e^{-2 x}\right]_{1}^{2} \\ & =\left(2-\frac{1}{2} e^{-2}+\frac{1}{16} e^{-4}\right)-\left(1-\frac{1}{2} e^{-1}+\frac{1}{16} e^{-2}\right) \\ & =1.9335-0.8245 \\ & =1.11 \text { (3 s.f.) } \end{aligned}$	M1 A1 A1 [3]	integration substituting limits into correct expression

